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Thermodynamic analysis of the tetragonal 
to monoclinic transformation in a 
constrained zirconia microcrystal 
Part 2 In the presence of an applied stress 

R. C. GARVIE 
CSIRO, Division of Materials Science, Advanced Materials Laboratory, PO Box 
4331, Melbourne, Victoria 3001, Australia 

A thermodynamic analysis was made of a simple model comprising a transforming 
t-ZrO2 microcrystal of size d constrained in a matrix subjected to a hydrostatic 
tensile stress field. The field generated a critical size range such that a t-particle 
transformed if dc~ < d < dco. The lower limit dc~ exists because at this point the 
maximum energy (supplied by the applied stress) which can be taken up by the 
crystal is insufficient to drive the transformation. The upper limit dcu is a 
consequence of the microcrystal being so large that it transforms spontaneously 
when the material is cooled to room temperature. Using the thermodynamic 
(Griffith) approach and assuming that transformation toughening is due to the 
dilational strain energy, this mechanism accounted for about one-third of the total 
observed effective surface energy in a peak-aged Ca-PSZ alloy. 

1. The critical size range for the 
t ransformat ion of a t -part ic le  

In Part 1 of this series [l] a thermodynamic 
analysis was made of a constrained t-Zr02 
particle transforming free of an applied stress. In 
the present work the analysis is extended to 
include the effect of an applied tensile stress on 
the constrained transformation. Such a study 
provides information on the maximum toughen- 
ing effect to be expected for a given particle- 
matrix combination and also is useful in design- 
ing practical materials. 

It is assumed that the applied stress is a hydro- 
static tensile stress. That portion of the strain 
energy density generated by the applied stress 
which is involved in the thermodynamics of the 
transformation of a microcrystal is designated 
Wa, and is related to the interaction energy dis- 
cussed by Eshelby [2]. To facilitate analysis, the 
particle is taken to be a spherical precipitate of 
t-ZrO2 in Ca-PSZ or a spherical intergranular 
particle in an A12 O3-ZRO2 alloy. The precipitate/ 
particle is further assumed to be located within 

the process zone near the crack tip; the process 
zone is defined as a region near the crack tip 
within which t-particles transform to 
m-symmetry due to the influence of the applied 
stress via the interaction energy term W~. Fig. 1 
illustrates the situation schematically. The 
thermodynamic description of the transfor- 
mation is given by 

Af0 = AEchem -~ AFdi 1 q- AFsh r 
V 

6EAS 
+ +w <o (1) 

where AF0 is the total change in free energy of 
the transformation, V is the volume of the 
microcrystal, AFchem is the chemical (Helmholz) 
free energy, AFoil is the strain energy density 
generated by the volume expansion associated 
with the t ~ m transforming, AFs~r is the 
residual shear stress after the microcrystal has 
twinned, EAS is the sum of all the interracial 
energy terms and dc is the critical diameter at 
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Figure 1 Schematic drawing of  a constrained t-ZrO 2 particle 
t ransforming in the presence o f  an applied stress. 

which transformation occurs for particular 
values of the temperature (Ms) and the applied 
stress. The various terms in Equation 1, except 
W~, are discussed in detail elsewhere [1]. 

The effect of W~ is to allow more subcritical 
particles to transform at a particular Ms than 
would otherwise be the case. For example, at 
room temperature (Ms "~ 300K), dc ~ 95nm 
for t-ZrO2 precipitates in Ca-PSZ. Precipitates 
with d < 95nm will not transform in the 
absence of an applied stress, because the term 
6ZAS/d is too large and Equation 1 will be 
positive. If  now a strain energy density Wa due to 
an applied stress is generated within the process 
zone, it will tend to nullify the dilational strain 
energy AFdil, and allow initially subcritical par- 
ticles to transform. Precipitates with a size 
d < dc will just transform when 

The maximum value that W~ can attain is 

AFa,, as far as Equation 1 is concerned; the 
applied stress cannot do more than compensate 
for AFa,. This reasoning implies that there is a 
lower bound to the critical size dcl, below which 
a particle cannot transform even if W~ exceeds 
AFd~ ~. This important point is now established 
that there is a critical size range for any given 
value of Ms within which t-particles can trans- 
form. The upper bound of the range dou occurs 
when the particles are large enough to trans- 
form spontaneously to m-symmetry when the 
material is cooled from the firing temperature to 
Ms. The lower bound d~ exists because at this 
size there occurs the maximum value of the 
interaction energy which can be taken up by the 
microcrystal. To find the value of de], set Equa- 
tion 2 equal to AFdi ~ and solve for d. 

The size dependence of  W~ is plotted in Fig. 2 
for Ca-PSZ and A1203-ZrO 2 materials at dif- 
ferent values of Ms. Suitable values of AFdi~ for 
both alloys have been discussed elsewhere [1]. 
The temperature dependence of the relationship 
between Wa and the critical size range was esti- 
mated by using Equation 1 in which AFchem was 
given by q(1 - T/To), where q is the heat of the 
transformation reaction, Tis the transformation 
temperature (Ms) as a particle of a given size and 
Tb is the transformation temperature of an 
infinite crystal. The critical size range for 
Ca-PSZ at room temperature is 62 to 95nm 
(Fig. 2a). The effect of increasing M s is to 
broaden the critical range and shift it to higher 
values. The critical size range at room tem- 
perature for A1203-ZrO 2 materials is very 
narrow, amounting to only 0.38 to 0.45#m 
(Fig. 2b). This result suggests that transfor- 
mation toughening in the bulk plays only a 
minor role in A1203-ZrO 2 alloys, as discussed 
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Figure 2 Size dependence of  the 
interaction energy term W~ for (a) 
Ca -PSZ and (b) AI203-ZrO ~. 

3480 



elsewhere [3, 4]. The effect of increasing Ms is 
similar to that observed for Ca-PSZ alloys. 
There is experimental evidence which lends some 
credence to the notion of  a critical size range, as 600 
displayed in Fig. 2. Precipitates in Ca-PSZ near 
fracture surfaces never transform when the size 

o) 

is less than about 60 nm [5]. Recent studies on a ~ 4oo 
commercial A1203-ZrO2 alloy showed that the .~ 
critical size range for the transformation of  "s 
intergranular t-particles was only about 0.1 /~m ~ zoo 
at room temperature [4]. These observations are z~ 
in good agreement with the calculated values 
(Fig. 2). 

2. Estimation of the toughening 
increment  

The introduction of an applied stress into the 
theromodynamics of the transformation allows 
the possibility of  estimating the toughening 
increment due to the t--* m inversion in the 
process zone. This problem can be solved in two 
ways. The first is the Griffith thermodynamic 
approach in which the characteristic features of  
the process zone define an effective surface 
energy which adds on to the intrinsic surface 
energy of the composite (see Appendix). In the 
recent literature [6-8] this approach yields an 
equation of the form 

Kr = - 2ERVf  AFstr + Afchem 

(3) 

where K~ is the fracture toughness of  the com- 
posite, K 0 is the fracture toughness of the com- 
posite containing particles just too small to 
transform (i.e. d ,-~ 60 nm for Ca PSZ). E is the 
Young's modulus and EAFstr is the total trans- 
formational strain energy ( -  AFdil + AFshr). 

As it is written Equation 3 is wrong. To find 
the correct equation, the following digression is 
necessary. The problem is that the term 
(EAF~tr + AFchem) is incorrect in principle as the 
proper thermodynamic quantity to define the 
toughening increment due to a transforming 
particle. The underlying thinking used in the 
literature to justify the selection of  this term is 
that the toughening increment is due to energy 
Wa being absorbed in the process zone from the 
applied stress, which causes the particles to 
transform; that is, - I V ,  = ( ~ ] A F s t  r + AFchem). 
This reasoning is incorrect on two counts. 
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Figure 3 Size dependence of the interaction energy W a and 
the strength of a Ca-PSZ alloy. 

Firstly, the previous relationship can only be 
derived from Equation 1 on the assumption that 
the interfacial energy term 6 E A S / d  is negligible. 
However, it is estimated that the contribution 
from this source amounts to about 23% of  the 
total energy change for precipitates in a Ca-PSZ 
alloy [5]. Although the interfacial energies in 
themselves are small, it is the combination of the 
facts that the particle size appears in the denomi- 
nator of the interfacial term and that the sizes 
involved are small which makes contributions 
from this source significant. More importantly, 
note that the term Wa is only invoked for sub- 
critical particles where size effects are significant. 
To discuss the former whilst simultaneously 
neglecting the letter is an exercise in illogic. The 
second error is the very concept that an energy 
W~, supplied by t h e  loading system and 
absorbed by transforming particles in the pro- 
cess zone, is responsible for the toughening in- 
crement. The fact is that in real materials the 
functional dependence of  the toughness/strength 
on the interaction energy is opposite to that 
indicated by Equation 3. Consider Fig. 3 which 
is a plot of the precipitate size dependence of  the 
strength (modulus of rupture, MOR) and the 
absolute value of the interaction energy W~ for a 
Ca-PSZ alloy [5]. Ground samples were used to 
obtain the strength data, so that values near the 
peak are too high by about 15 to 20% [9]. Values 
of  the interaction energy were calculated from 
Equation 1 using data from the various terms 
which have been discussed elsewhere [1]. Note 
that where the maximum strength occurs the 
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precipitate size ~ de. ~ 95 nm, and only a small 
value of IV, is required to satisfy Equation 1 
thereby allowing the transformation to occur. 
The minimum toughening effect occurs when the 
size ,-~ dc~ "~ 62 nm, where a large value of Wa is 
required to effect the transformation. Clearly the 
interaction energy term IV, cannot be used to 
estimate the toughening increment. 

It is argued here that the correct energy term 
to estimate the toughening increment to a first 
approximation in Equation 3 is the dilational 
energy term AFai~. Consider the case for mono- 
sized precipitates with d ~ dcu and W~ ,-~ 0. 
Before the transformation there is only a neglig- 
ible strain energy density in the process zone. 
After the transformation the strain energy den- 
sity is given by Y A F s t  r = AFd~ ~ + AF~h,. On the 
assumption that the shear strain energy AFsh r 
does not interact with the applied stress, the 
loading system must supply an energy density 
equal, but opposite in sign, to AFdi I to restore the 
energy density within the zone to its original 
level. This assumption is reasonable because the 
experimental value of dd ~ 60 nm agrees with 
that calculated using Wa = AFdi~ in Equation 2. 
The transforming particles do work on them- 
selves and the surrounding matrix which most be 
overcome to restore the energy density to its 
original level. This is the source to transfor- 
mation toughening and has been discussed by 
Hornbogen [10]. The energy density supplied 
externally which compensates for AFd~ is not the 
W~ which appears in Equation 1. This energy 
desnity is designated here the restoring energy 
density Wr. 

Suppose now that the mono-sized precipitates 
have d ~ dd and W~ ~ AFdi  I . Just prior to the 
transformation the strain energy density 
throughout the zone is AFdi~. During the trans- 
formation a strained t-particle with an energy 
density of about AFoi t becomes an m-particle 
with an energy density near to zero (neglecting 
AF~hr). Therefore, again, the loading system 
must supply an energy density Wr = AFdiJ to 
restore the strain energy density in the zone to its 
original level. Although the transforming par- 
ticle of size ~ dd does no work on itself or its 
surroundings in the thermodynamic sense, it 
does relax the strain energy density which pre- 
vailed before transformation. At intermediate 
precipitate sizes, dcl < d < d~u, the effect of the 
transformation will be partly to relieve the 
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Figure 4 Size dependence of  the restoring energy density W~. 

externally supplied energy Wa, and partly to do 
thermodynamic work on the particles them- 
selves and their surroundings. Always, the load- 
ing system must supply an amount of energy 
W r = AFdi  I to restore the strain energy density in 
the zone to the level which existed before trans- 
formation occurred (neglecting AFshr). Fig. 4 is a 
schematic illustration of the situation. Accord- 
ing to this argument, the correct form of the 
equation which predicts the toughening incre- 
ment, using the Griffith concept, is given (see 
Appendix) by 

KT = (K~ + 2ERVfWr)  '/2 (4) 

The second approach to predicting the toughen- 
ing increment is one using fracture mechanics in 
which the crack tip is considered to be shielded 
from the applied stress by the process zone [11]. 
The fracture mechanics analysis yields the foll- 
owing equation: 

KT = Ko + 0 . 2 2 E V r A V R  ~/2 (5) 

where A V is the transformational strain of a 
particle. To use Equations 4 and 5 requires 
knowledge of the particle size dependence of R 
and Vf. The size (and hence the KT dependence) 
of Vr can be estimated on the assumption that 
any given mean precipitate size d is normally 
distributed with a standard deviation taken to be 
16%. The latter figure was selected because it 
gave good agreement between calculated and 
experimental values of Vf. For a particular mean 
value of d, the fraction of transformable pre- 
cipitates is the area under the normal curve for 
which 62 nm < d < 95 nm. An example of this 
situation is shown in Fig. 5, where the fraction 
of transformable precipitates is found within the 
shaded region. The value of Vr is then half this 
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Figure 5 Particle size distribution of precipitates in a 
Ca PSZ alloy. 
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amount, because the precipitate phase comprises 
about 50% of the Ca-PSZ alloy [12]. When the 
size distribution is cast in the standard form V r is 
given by 

1 1 f,(u) 
Vr - 2 (2~) I/2 Jr0) exp ( -  fl/2) dt (6) 

where t(u) = (95 - d)/O.16d and t(1) = 
( 6 2 -  d)/O.16d. The size dependence of Vr is 
plotted in Fig. 6, where it is seen that this func- 
tion is a controlling factor in the size dependence 
of the strength (Fig. 3). 

In principle the size dependence of  R can be 
calculated theoretically from Equation 2. For  a 
given particle size d < do. (at room temperature, 
say) the externally supplied strain energy density 
required in the process zone to effect the trans- 
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formation is given by 

ca = IW,.[ = 6 ~ A S  1 
2--E a~ (7) 

where aa is the applied stress. Taking advantage 
of the fact that prior to any transformation 

IC0 
~, - (2~r)1/2 (8) 

where r is the distance from the .crack tip, and 
assuming that r is that distance at which pre- 
cipitates of  size d just transform so that r = R, 
then 

R - K~ dcu (9) 

The size dependence of R is plotted in Fig. 7, 
where it is seen that the zone size is unstable 
when d ~ dcu. Mathematically, R becomes 
infinite in this region and physically the zone 
disappears because transformation occurs 
everywhere throughout the sample. The behav- 
iour of real materials seems to bear some 
resemblance to that indicated by Fig. 7. Very 
large process zones with R ~ 70/~m were 
observed in slightly overaged samples of  
Mg-PSZ (M. V. Swain, private communi- 
cation). However, for underaged materials 
R-values predicted by Equation 9 are much less 
than those observed experimentally. Two factors 
could account for this discrepancy. First, real 
precipitates are characterized by a size distri- 
bution whereas Equation 7 is based on idealized 
mono-sized precipitates; thus precipitates larger 
than some nominal value of  d will transform at 
values of r > R. Second, one transforming pre- 
cipitate could "catalyse" the transformation of  a 
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Figure 8 Comparison of  calculated and experimental values 
of  the fracture toughness of  a Ca-PSZ alloy as a function of  
precipitate size. 

neighbour. It is not straightforward to account 
for these effects analytically, so the size depen- 
dence of R was established empirically using 
data published elsewhere [13, 14]. 

Experimental values of Ka- are plotted as a 

function of precipitate size in Fig. 8 (solid 
curve). These data were obtained by converting 
the strength values of Fig. 3 (corrected for sur- 
face compressive stresses) to KT values, using 
published flaw size data [9]. Calculated values of 
KT using the energy balance approach (Equation 
4, dashed curve) underestimate the toughening 
increment (Ka- - K0) by about 53% at the peak 
value. The situation is worse using the stress field 
approach (Equation 5, dotted curve)with the 
underestimate increasing to about 74%. In 
principle both equations should yield similar 
results. The reason for the discrepancy is 
unknown. 

Clearly transformation toughening is not the 
only toughening mechanism operating in the 
Ca-PSZ alloy. For example with a precipitate 
size of about 3 nm no t-precipitates transform, 
yet the Kx value is 3.2 MPam ~/2 compared to the 
value of 1.7 MPa m 1/2 for the pure matrix phase, 
cubic stabilized zirconia (CSZ). Mechanisms 
which have been discussed in the recent literature 
include crack deflection and/or bowing [15] and 
microcracking [16]. Even if these contributions 
are included there will still be a large discrepancy 
between calculated and experimental values of 
the fracture toughness, as will be discussed 
below. When this fact is combined with the 
knowledge that both types of theoretical calcula- 
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tion give serious underestimates of the expected 
toughening increment, it suggests that there is an 
additional toughening mechanism which needs 
to be considered. A candidate for the unknown 
mechanism is plastic deformation, which has 
been observed operating in the precipitate- 
toughened alloys [17-19]. In the references cited 
the plastic deformation is assocaiated with com- 
pressive stress fields. However, it has recently 
been observed that tensile stress-strain curves 
for Mg-PSZ alloys showed nonlinear behaviour 
which could be due to plastic deformation 
(M. V. Swain, private communication). 

If it is assumed as a working hypothesis that 
plastic deformation contributes to the toughen- 
ing increment, then a qualitative account can be 
given of the relative importance of the various 
mechanisms near the peak value using the 
following equation: 

~ K  = [K2(CSZ) + K2(d/b) + K2(mc) 

+ K2(tt) + K2(p)] '/2 (10) 

where the letters in brackets denote contri- 
butions to the total fracture toughness (EK) 
from CSZ free of any precipitate s (CSZ L crack 
deflection/bowing from the precipitates as a dis- 
persed second phase (d/b), microcracking from 
the larger t- and m- precipitates (mc), trans- 
formation toughening (tt) a0d plastic defor- 
mation (p), respectively. The formation of 30 nm 
t-precipitates in under-aged Ca-PSZ increases 
the fracture toughness to 3.2 MPa m '/2 from 
1.72MPam 1/2 measured for CSZ [9, 13]. The 
increase is likely to be due to crack deflection 
and/or bowing, which was observed to cause a 
similar increase in toughness in an m-ZrO2/ZnO 
composite [15]. In the reference cited, t-ZrO2 
particles did not contribute to the toughness, 
unlike t-ZrO2 precipitates in Ca-PSZ. The fact 
that under- and over-aged Ca-PSZ materials 
have similar strength suggests the possibility 
that the crack deflection/bowing contribution is 
approximately constant for precipitates in the 
range 30 to 120 nm. An estimate of this contri- 
bution can be made upon noting that 

Ko = [K2(CSZ) + K2(d/b)] '/2 

= 3.2 MPa m m (11) 

whence K(d/b) = 2.27 MPa m 1/2. 

The toughness of over-aged Ca-PSZ 
(3.7 MPam 1/2) is somewhat larger than it is for 



under-aged material (3.2 MPa ml/2). The 
increase could be due to crack deflection/bowing 
being more efficient for larger m-precipitates 
than for smaller t-precipitates. A second possi- 
bility is that large t- and m-precipitates cause 
microcracking as has been observed elsewhere 
[16]. Assuming that the latter situation prevails, 
the microcracking contribution to toughness is 
given by 

[K2(CSZ) + K2(d/b) + K2(mc)] '/2 

= 3.7 MPam m (12) 

so that K(mc) ~ 1.9 MPa m�91 The contribution 
due to transformation toughening K(tt) is 
calculated to be about 3.8 MPam ~/2 assuming, 
arbitrarily, that the thermodynamic approach 
(Equation 4) gives the correct result. When the 
previous toughness values from the various 
sources are inserted into Equation 10, the contri- 
bution from the proposed plastic deformation, 
K(p), amounts to 4.2 MPam ~/2. 

To obtain some idea of the relative import- 
ance of the various mechanisms the toughness 
values must be converted to fracture energies 
(F), using the relation 

K 2 
r - (13) 

2E 
Taking advantage of the fact that fracture ener- 
gies are additive, and noting that E has a con- 
stant value of about 207 GPa throughout the 
ageing sequence, one obtains [9, 20] 

r = F(CSZ) + r(d/b) + F(mc) 

+ F(tt) + F(p) (14) 

l l 2 J m  -2 = 7.1 (6%) + 17.6 (16%) 

+ 8.7 (8%) + 34.9 (31%) 

+ 42.6 (38%) 

Transformation toughening and the proposed 
plastic deformation mechanism are the two most 
important toughening mechanisms, comprising 
31% and 38% respectively of the total effective 
surface energy of the peak-aged alloy. 

3. Conclusions 
(a) The effect of an applied stress on the 

thermodynamics of the transformation in a con- 
strained t-ZrO2 microcrystal is to generate a 
critical size range within which the particles 
transform. 

(b) The proper energy term to calculate the 

toughening increment due to transformation 
toughening in the energy balance approach is 
the dilatational strain energy, which is indepen- 
dent of the applied stress, and approximately 
independent of particle size. 

(c) Transformation toughening accounts for 
about one-third of the total observed effective 
surface energy of a peak-aged Ca-PSZ alloy. 

Appendix 
The toughen ing  increment using the 
thermodynamic  approach 
The reduction in strain energy U of a tensile, 
elastic plate of unit width containing a crack of 
length 2C, subjected to an applied stress oa, is 
[21, 22] 

U = H2coZ/e (A1) 

where E refers to plane stress. The reduction in 
strain energy is opposed by the energy required 
to create the crack surfaces, namely 

Us = 4CF0 (A2) 

The condition for crack propagation is found by 
equating the total change in energy per incre- 
mental increase in crack length to zero. The 
situation is complicated by the presence of a 
process zone. The dilational strain energy due to 
the t -*  m transformation reduces the tensile 
strain energy in the zone; to supply strain energy 
to the crack tip at the same rate, the applied 
stress must restore the strain energy in the zone 
to the original level which existed before 
transformation occurred. The transformational 
strain energy can therefore be regarded as an 
increase in the effective surface energy. The 
transformational strain energy Ut,e is a product 
of the volume of the process zone, the fraction of 
the material which transforms and the dilatation 
strain energy density AFdil. The volume of the 
process zone is approximately that of two 
parallelepipeds of unit width, each adjacent to a 
crack surface and of cross-section (2R + 2C)R, 
so that 

gtse = 4RCVfAFd~ (13) 

where R < C. Applying the condition for crack 
propagation, 

Ayu 
AC 

o r  

2~Ca~/E + 4F0 + 4RVfAFdil 

= 0 (A4) 

Kv = (K~ + 2ERVfAFd,,) '/2 (A5) 
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Other attempts to use the thermodynamic 
approach have been made in the recent literature 
which require comment, because they are in 
error [6-8]. Evans and Heuer [6] derived the 
following equation: 

Ft = I'o + 2Rf(AUr - VpAG0) (m6) 

where F is the surface energy, f is the number of 
particles per unit volume, A UT is the total trans- 
formational strain energy of a single particle, Vp 
is the particle volume and AGo is the change in 
chemical free energy per mole of the transfor- 
mation. Expressing Equation A6 in terms of the 
fracture toughness one obtains 

Kx = [K 2 + 4ERf(AUT - VpAG0)] I/2 (A7) 

The wrong choice of energy term to calculate the 
toughening increment has been discussed in the 
main text. Other difficulties with Equation A7 
are that the units in the second term on the 
right-hand side are dimensionally incorrect, and 
the numerical factors should be two rather than 
four. The reason for the latter discrepancy is that 
Evans and Heuer write that the change in effec- 
tive surface energy with respect to an increment- 
al increase in crack length is 2F0, in the absence 
of any transformation. However, the standard 
result for this quantity for the case of an interior 
slit crack of length 2C is 4F0, as in Equation A2 
[21, 22]. 

According to Claussen and Rfihle [7], the 
toughening increment due to a process zone 
using the thermodynamic approach is 

KT = [K0 + 2ERVr(AUT + AGchem)] 1/2 

(A8) 

Apart from the wrong choice of energy terms the 
major flaw with this result is that it is based on 
the idea that the fracture toughness increments 
from various sources are additive, whereas the 
accepted concept is that it is the various contri- 
butions to the effective surface energy which are 
additive [20]. Therefore the squares of the 
various fracture toughness increments must be 
added if the thermodynamic approach is used. 
Using the energy balance concept, Lange [8] 
derived the following equation: 

[ 2ERVf(AG - -  AUxF)l 1/2 
K T  = K2o + ~ :-~2~ . j  

(A9) 

where (1 - F) is the loss of strain energy due to 
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any microcracking and v is Poisson's ratio. The 
same comments concerning the energy term that 
were made previously apply also to Equation 
A9. 

When the confusion as to the correct choice of 
the energy term and its sign are clarified 
according to the view presented in this work, 
then Equations A7 to A9 are equivalent to 
Equation A5. 
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